
Whitepaper
FlashARB: Flash Automated RealTime Bet

A Decentralized Prediction Market Protocol for Short-Term Cryptocurrency Price Bets

Table of Contents

1. Introduction
2. Features
3. Architecture & Contracts

○ 3.1 BetFactory
○ 3.2 Bet

4. How It Works
○ 4.1 Create a Bet
○ 4.2 Join a Bet
○ 4.3 Bet Start
○ 4.4 Resolution & Settlement
○ 4.5 Claim Rewards

5. Core Contract Methods
6. Data Structures
7. Oracle Integration
8. Security & Edge Cases

1. Introduction

Flash Automated Realtime Bet (FlashARB) is a fully decentralized prediction market protocol. It
enables permissionless, short-term bets on cryptocurrency price movements. Users can create or join
pools based on their prediction (Up or Down). Resolution is transparent via on-chain price oracles.

FlashARB is optimized for security, gas efficiency, and trustlessness. It offers a fair and open betting
experience.

2. Features

● User-defined Pools: Creator selects token, duration, participant limits, and minimum stake.
● Open Participation: Any user may join until the pool is full.
● Pyth Oracle Integration: Trustless on-chain price feeds are used.
● Automated Distribution: Rewards are redistributed pro-rata to winners.
● Resolution Grace Period: A flexible settlement window is provided.
● Fully Permissionless: No admin intervention is required.
● Gas Optimized: Immutable variables and efficient data layout are used.
● Security Hardened: Reentrancy guards, validation checks, and controlled access are in place.
● Detailed Event Logs: Indexed events are available for all key operations.

3. Architecture & Contracts

3.1 BetFactory

● Deploys new Bet pools.
● Tracks active and settled pools.
● Contains core validation logic and immutable variables.
● Emits events for creation and resolution.

3.2 Bet

● An isolated contract per prediction pool.
● Handles join, start, resolve, and claim logic.
● Stores participants, pricing, status, and pool configuration.
● Enforces one-entry-per-user.
● Applies reentrancy protection and data integrity checks.

4. How It Works

4.1 Create a Bet

`function createBet(address token, uint256 durationSeconds, uint8 minParticipants, uint256
minStakeWei) external returns (uint256 betId);`

● Deploys a new Bet instance.
● The caller becomes the pool creator (for metadata).
● No tokens/ETH are required to create.

4.2 Join a Bet

`function joinBet(uint256 betId, bool direction, uint256 stakeWei) external payable;`

● User selects direction and stakes amount >= minStake.
● Records position and adds to participants.

4.3 Bet Start

`function startBet(uint256 betId) external;`

● Triggered when the participant minimum is reached.
● Fetches and stores initial price from Pyth.

4.4 Resolution & Settlement

`function resolveBet(uint256 betId) external;`

● After time expiry, fetches the final price.
● Winners are determined based on the price delta.
● A draw condition is handled.

4.5 Claim Rewards

`function claim(uint256 betId) external;`

● Winners claim pro-rata from the reward pool.
● A draw returns the full stake.

5. Core Contract Methods

Function Description Security Features

`createBet(...)` Deploy a new prediction pool Input validation, reentrancy
guard

`joinBet(...)` Join an existing bet Checks, duplicate prevention

`startBet(...)` Record initial price from oracle Oracle read, start timestamp
logging

`resolveBet(...)` Finalize the bet outcome Oracle read, reward logic

`claim(...)` Withdraw reward or refund Prevents double claims

`forceResolveDraw()` Draw resolution on timeout Safety fallback for stuck bets

6. Data Structures

`enum BetStatus { Created, InProgress, Resolved }`
struct Participant {
 address user;
 direction direction;
 uint256 stakeUSDC;
 bool claimed;
}

struct BetInfo {
 address creator;
 address priceFeed;
 address usdcToken;
 uint256 durationSeconds;
 uint8 maxParticipants;
 uint256 minStakeUSDC;
 uint256 initialPrice;
 uint256 endPrice;
 uint256 startTimestamp;
 uint256 rewardPoolUSDC;
 uint256 feeETH;
 BetStatus status;
 Participant[] participants;
}
7. Oracle Integration

● Uses Pyth Network for asset pricing.
● Real-time price is fetched at:

○ `startBet()` for `initialPrice`
○ `resolveBet()` for `endPrice`

● On-chain pricing ensures trustless resolution.

8. Security & Edge Cases

● One-entry rule: Per-user entry is enforced.
● Reentrancy protection: Applied on all external mutative calls.
● Zero-address and input checks: On all sensitive operations.
● Graceful fallback: Allows resolution as draw if unresolved.
● NonReentrant & CEI Pattern: Ensures transfer safety.
● Robust event system: Enables accurate off-chain tracking.
● Draw safety: Refunds all participants.
● Oracle read errors: Handled gracefully.

