
Whitepaper
FlashARB: Flash Automated RealTime Bet

A Decentralized Prediction Market Protocol for Short-Term Cryptocurrency Price Bets

Table of Contents

1.​ Introduction
2.​ Features
3.​ Architecture & Contracts

○​ 3.1 BetFactory
○​ 3.2 Bet

4.​ How It Works
○​ 4.1 Create a Bet
○​ 4.2 Join a Bet
○​ 4.3 Bet Start
○​ 4.4 Resolution & Settlement
○​ 4.5 Claim Rewards

5.​ Core Contract Methods
6.​ Data Structures
7.​ Oracle Integration
8.​ Security & Edge Cases

1. Introduction

Flash Automated Realtime Bet (FlashARB) is a fully decentralized prediction market protocol. It
enables permissionless, short-term bets on cryptocurrency price movements. Users can create or join
pools based on their prediction (Up or Down). Resolution is transparent via on-chain price oracles.

FlashARB is optimized for security, gas efficiency, and trustlessness. It offers a fair and open betting
experience.

2. Features

●​ User-defined Pools: Creator selects token, duration, participant limits, and minimum stake.
●​ Open Participation: Any user may join until the pool is full.
●​ Pyth Oracle Integration: Trustless on-chain price feeds are used.
●​ Automated Distribution: Rewards are redistributed pro-rata to winners.
●​ Resolution Grace Period: A flexible settlement window is provided.
●​ Fully Permissionless: No admin intervention is required.
●​ Gas Optimized: Immutable variables and efficient data layout are used.
●​ Security Hardened: Reentrancy guards, validation checks, and controlled access are in place.
●​ Detailed Event Logs: Indexed events are available for all key operations.

3. Architecture & Contracts

3.1 BetFactory

●​ Deploys new Bet pools.
●​ Tracks active and settled pools.
●​ Contains core validation logic and immutable variables.
●​ Emits events for creation and resolution.

3.2 Bet

●​ An isolated contract per prediction pool.
●​ Handles join, start, resolve, and claim logic.
●​ Stores participants, pricing, status, and pool configuration.
●​ Enforces one-entry-per-user.
●​ Applies reentrancy protection and data integrity checks.

4. How It Works

4.1 Create a Bet

`function createBet(address token, uint256 durationSeconds, uint8 minParticipants, uint256
minStakeWei) external returns (uint256 betId);`

●​ Deploys a new Bet instance.
●​ The caller becomes the pool creator (for metadata).
●​ No tokens/ETH are required to create.

4.2 Join a Bet

`function joinBet(uint256 betId, bool direction, uint256 stakeWei) external payable;`

●​ User selects direction and stakes amount >= minStake.
●​ Records position and adds to participants.

4.3 Bet Start

`function startBet(uint256 betId) external;`

●​ Triggered when the participant minimum is reached.
●​ Fetches and stores initial price from Pyth.

4.4 Resolution & Settlement

`function resolveBet(uint256 betId) external;`

●​ After time expiry, fetches the final price.
●​ Winners are determined based on the price delta.
●​ A draw condition is handled.

4.5 Claim Rewards

`function claim(uint256 betId) external;`

●​ Winners claim pro-rata from the reward pool.
●​ A draw returns the full stake.

5. Core Contract Methods

Function Description Security Features

`createBet(...)` Deploy a new prediction pool Input validation, reentrancy
guard

`joinBet(...)` Join an existing bet Checks, duplicate prevention

`startBet(...)` Record initial price from oracle Oracle read, start timestamp
logging

`resolveBet(...)` Finalize the bet outcome Oracle read, reward logic

`claim(...)` Withdraw reward or refund Prevents double claims

`forceResolveDraw()` Draw resolution on timeout Safety fallback for stuck bets

6. Data Structures

`enum BetStatus { Created, InProgress, Resolved }`
struct Participant {
 address user;
 direction direction;
 uint256 stakeUSDC;
 bool claimed;
}

struct BetInfo {
 address creator;
 address priceFeed;
 address usdcToken;
 uint256 durationSeconds;
 uint8 maxParticipants;
 uint256 minStakeUSDC;
 uint256 initialPrice;
 uint256 endPrice;
 uint256 startTimestamp;
 uint256 rewardPoolUSDC;
 uint256 feeETH;
 BetStatus status;
 Participant[] participants;
}
7. Oracle Integration

●​ Uses Pyth Network for asset pricing.
●​ Real-time price is fetched at:

○​ `startBet()` for `initialPrice`
○​ `resolveBet()` for `endPrice`

●​ On-chain pricing ensures trustless resolution.

8. Security & Edge Cases

●​ One-entry rule: Per-user entry is enforced.
●​ Reentrancy protection: Applied on all external mutative calls.
●​ Zero-address and input checks: On all sensitive operations.
●​ Graceful fallback: Allows resolution as draw if unresolved.
●​ NonReentrant & CEI Pattern: Ensures transfer safety.
●​ Robust event system: Enables accurate off-chain tracking.
●​ Draw safety: Refunds all participants.
●​ Oracle read errors: Handled gracefully.

